首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90755篇
  免费   5555篇
  国内免费   12090篇
化学   70419篇
晶体学   1257篇
力学   2530篇
综合类   864篇
数学   12717篇
物理学   20613篇
  2023年   651篇
  2022年   1160篇
  2021年   1754篇
  2020年   2277篇
  2019年   2214篇
  2018年   1940篇
  2017年   2810篇
  2016年   2984篇
  2015年   2478篇
  2014年   3458篇
  2013年   6933篇
  2012年   6426篇
  2011年   5249篇
  2010年   4374篇
  2009年   5950篇
  2008年   6151篇
  2007年   6359篇
  2006年   5773篇
  2005年   4896篇
  2004年   4550篇
  2003年   3776篇
  2002年   5001篇
  2001年   2888篇
  2000年   2486篇
  1999年   2123篇
  1998年   1831篇
  1997年   1482篇
  1996年   1201篇
  1995年   1360篇
  1994年   1228篇
  1993年   1033篇
  1992年   967篇
  1991年   639篇
  1990年   543篇
  1989年   508篇
  1988年   372篇
  1987年   309篇
  1986年   272篇
  1985年   220篇
  1984年   247篇
  1983年   141篇
  1982年   225篇
  1981年   195篇
  1980年   208篇
  1979年   213篇
  1978年   169篇
  1977年   88篇
  1976年   73篇
  1974年   41篇
  1973年   44篇
排序方式: 共有10000条查询结果,搜索用时 21 毫秒
991.
992.
Embedded random matrix ensembles are generic models for describing statistical properties of finite isolated interacting quantum many-particle systems. For the simplest spinless fermion (or boson) systems, with say mm fermions (or bosons) in NN single particle states and interacting via kk-body interactions, we have EGUE(kk) [embedded GUE of kk-body interactions] with GUE embedding and the embedding algebra is U(N)U(N). A finite quantum system, induced by a transition operator, makes transitions from its states to the states of the same system or to those of another system. Examples are electromagnetic transitions (then the initial and final systems are same), nuclear beta and double beta decay (then the initial and final systems are different), particle addition to or removal from a given system and so on. Towards developing a complete statistical theory for transition strength densities (transition strengths multiplied by the density of states at the initial and final energies), we have derived formulas for the lower order bivariate moments of the strength densities generated by a variety of transition operators. Firstly, for a spinless fermion system, using EGUE(kk) representation for a Hamiltonian that is kk-body and an independent EGUE(tt) representation for a transition operator that is tt-body and employing the embedding U(N)U(N) algebra, finite-NN formulas for moments up to order four are derived, for the first time, for the transition strength densities. Secondly, formulas for the moments up to order four are also derived for systems with two types of spinless fermions and a transition operator similar to beta decay and neutrinoless beta decay operators. In addition, moments formulas are also derived for a transition operator that removes k0k0 number of particles from a system of mm spinless fermions. In the dilute limit, these formulas are shown to reduce to those for the EGOE version derived using the asymptotic limit theory of Mon and French (1975). Numerical results obtained using the exact formulas for two-body (k=2k=2) Hamiltonians (in some examples for k=3k=3 and 44) and the asymptotic formulas clearly establish that in general the smoothed (with respect to energy) form of the bivariate transition strength densities take bivariate Gaussian form for isolated finite quantum systems. Extensions of these results to bosonic systems and EGUE ensembles with further symmetries are discussed.  相似文献   
993.
994.
Symmetric informationally complete measurements (SICs in short) are highly symmetric structures in the Hilbert space. They possess many nice properties which render them an ideal candidate for fiducial measurements. The symmetry of SICs is intimately connected with the geometry of the quantum state space and also has profound implications for foundational studies. Here we explore those SICs that are most symmetric according to a natural criterion and show that all of them are covariant with respect to the Heisenberg–Weyl groups, which are characterized by the discrete analog of the canonical commutation relation. Moreover, their symmetry groups are subgroups of the Clifford groups. In particular, we prove that the SIC in dimension 2, the Hesse SIC in dimension 3, and the set of Hoggar lines in dimension 8 are the only three SICs up to unitary equivalence whose symmetry groups act transitively on pairs of SIC projectors. Our work not only provides valuable insight about SICs, Heisenberg–Weyl groups, and Clifford groups, but also offers a new approach and perspective for studying many other discrete symmetric structures behind finite state quantum mechanics, such as mutually unbiased bases and discrete Wigner functions.  相似文献   
995.
This paper presents an investigation regarding poly(vinyl alcohol)/zirconium acetate (organic–inorganic) (PVA/Zrace) nanofibers prepared by electrospinning which could be used as a precursor for fabricating ceramic metal oxide nanofibers. The effect of some processing variables, including polymer solution concentration, tip to collector distance and applied voltage of electrospinning, and the amount of Zrace and their interactions, on the diameter of the nanofibers were studied. Taguchi experimental design and a statistical analysis (ANOVA) were employed and the relationship between experimental conditions and yield levels determined. It was concluded that to obtain a narrow diameter distribution as well as maximum fiber fineness, a polymer concentration of 10 wt%, tip to collector distance of 18 cm and applied voltage of 20 kV variables were the optimum. Furthermore, it was also concluded that the ratio of Zrace (6 g) to PVA solution (10% wt) played an important role for achieving the minimum fiber diameter. Under these optimum conditions, the diameters of the electrospun composite fibers ranged from 86 nm to 381 nm with a diameter average of 193 nm. The experiments were done with Qualitek-4 software with “smaller is better” as the quality characteristics. The optimized conditions showed an improvement in the fibers diameter distribution and the average fibers diameter showed good resemblance with the result predicted using the Taguchi method and the Qualitek-4 software. The ANOVA results showed that all factors had significant effects on the fibers diameter and distribution, but the effect of PVA concentration and zirconium acetate were more significant than the other factors.  相似文献   
996.
The effects of addition of synthesized organic-suspension silver nanoparticles on the crystallization and thermal stability of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were studied by transmission electron microscopy (TEM), differential scanning calorimetry (DSC), wide-angle X-ray diffraction (XRD), UV-Vis absorption spectroscopy, polarized optical microscopy (POM), and thermal gravimetric analysis (TGA). The TEM images showed the average primary size of the as-synthesized silver nanoparticles, coated with a monolayer of the surfactants consisting of oleic acid and an alkylamine, was about 5 nm with narrow distribution, and that they were uniformly dispersed in n-heptane. PHBV/silver nanocomposites were prepared by melt mixing in an internal mixer and then injection molded into rectangle-shaped specimens by a labscale injection molding device. The coated silver nanoparticles showed a homogenuous dispersion in the PHBV matrix when the content of coated silver nanoparticles was about 1%. Both the DSC and POM data showed the efficient heterogeneous nucleation by the coated silver nanoparticles for facilitating PHBV crystallization. The thermal stability of the PHBV/silver nanocomposites improved with the increase in the content of the coated silver nanoparticles.  相似文献   
997.
Structural and optical properties of 1 at % Al-doped Zn1−xMgxO (x=0–8%) powders prepared by sol–gel method were systematically investigated by means of X-ray diffraction, scanning electron microscopy, ultraviolet–visible absorbance measurement, photoluminescence and Raman scattering spectra. All the powders retained the hexagonal wurtzite structure of ZnO. The band gap and near band emission energies determined from absorbance and photoluminescence spectra increased linearly with increasing Mg content, respectively, which implied that the Mg worked effectively on ZnO band gap engineering, irrespective of Al codoping. However, according to the PL and Raman scattering studies, for the sample of x=8%, the Al doping efficiency was decreased by higher Mg codoping. On the other hand, the effect of Mg codoping on photocatalytic degradation of methylene orange was explored experimentally. The substitution of Mg ions at Zn sites shifted the conduction band toward higher energies and then enhanced the photocatalytic activity, while the incorporation of interstitial Mg ions and decreased Al doping efficiency for higher Mg doping sample (x=8%) reduced the photocatalytic activity.  相似文献   
998.
We obtained a low cost and abundant nanopigment material composed of Rhodamine B (Rh-B) organic dye compound and Unye bentonite (UB) clay from Turkey. The characterization of the nanopigment was investigated using scanning electron microscopy (SEM), particle size distribution, powder X-ray diffraction (PXRD), Fourier transformed infra-red spectroscopy (FT-IR) and thermal analysis techniques. According to the result of texture analyses, we showed that the particle size distribution (d: 0.5-mean distribution) of Rh-B/UB nanopigment material was around 100 nm diameter. It was also demonstrated that the samples had a particle size around nm diameter in SEM images. As seen in the PXRD and thermal analysis, there is a difference in basal spacing by 1.46° (2θ) and a higher mass loss by 7.80% in the temperature range 200–500 °C compared to the raw bentonite.  相似文献   
999.
Crystallization process of Gd2Ti2O7 precursor's powder prepared by Pechini-type polymerized complex route has been studied under isothermal experimental conditions in an air atmosphere. It was found that the crystallization proceeds through two-parameter Šesták–Berggren (SB) autocatalytic model, in the operating temperature range of 550 °C≤T≤750 °C. Based on the behavior of SB parameters (M, N), it was found that in the lower operating temperature range, the crystallites with relatively low compactness exist, which probably disclosed low dimensionality of crystal growth from numerous nucleation sites, where the amorphous solid is produced. In the higher operating temperature region (above 750 °C), it was established that a morphological well-defined and high-dimensional particles of the formed pyrochlore phase can be expected. It was found that at T=850 °C, there is a change in the rate-determining reaction step, from autocatalytic into the contracting volume mechanism.  相似文献   
1000.
The Through-SiliconVias (TSV) is a key component of three dimensional electronic packaging. Obtaining its stresses is very important for evaluating its reliability. A micro-infrared photoelasticity system with a thermal loading function was built and applied to characterize the stresses of the TSV structure. Through testing it was found that the stress of each TSV is different even if their fabrication technology is exactly the same, that different TSVs obtain their stress free states at different elevated temperatures, and that their stress free states are maintained even when the temperature is further elevated. A finite element model was used to quantitatively determine the stresses of a TSV under different stress-free temperatures. Different virtual photoelasticity fringe patterns were then created based on the principle of photoelasticity and the simulated stresses. Comparing the virtual fringe patterns with the experimental pattern, an appropriate virtual photoelasticity fringe pattern and the corresponding stresses of TSV were determined  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号